Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0238764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903276

RESUMO

INTRODUCTION: Diabetes remains a growing public health concern in Egypt, as prevalence of Type II diabetes (TIID) has nearly tripled there in the last two decades. Egypt was ranked ninth worldwide in number of diabetes cases, with prevalence of 15.56% among adults. Recent studies have proposed that disturbance of gut microbiota could influence TIID development and indicated associations between a reduced diversity in microbiomes and Type I diabetes (TID). In the present study, we investigated the composition and abundance of the bacterial microbiome in disease state (TID and TIID) of Egyptian patients. Our goal in this study was to characterize features of the gut microbiota and possible differences associated with TID and TIID in this population. METHODS: DNA was extracted from fecal samples taken from 22 TID and 18 TIID outpatients of Al-Hussein hospital, Cairo, Egypt. 16S rRNA amplicon sequencing was used to characterize the bacterial taxa and these reads were processed using the software mothur with analysis utilizing packages vegan, phyloseq and metagenomSeq in R. RESULTS AND CONCLUSIONS: Our results highlighted a significant increase in abundance of Gram negative, potentially opportunistic pathogenic taxa (Pseudomonas, Prevotella) in all diabetic groups, compared to the control. Lipopolysccharide (LPS), a component of the gram-negative bacterial wall, can activate local immune response and may result in low-grade systemic inflammation contributing to insulin resistance. The gram-positive Gemella, which is associated with increased risk to diabetes, also had a significant increase in abundance in all diabetic groups, compared to the control. In contrast, the commensal bacterial taxa Turicibacter, Terrisporobacter and Clostridium were found to be more abundant in the control group than in TID. Further studies are needed to understand the role of these taxa in health and disease. Lower Richness and low Shannon diversity, though not statistically significant, were observed for TID subjects with no glucose control and with onset of liver disease or hypertension compared to other subjects. In addition, large variation in alpha diversity within the control group could also be observed. Future studies will include larger samples sizes to further elucidate these findings, as well as possible metagenomic studies to examine the intriguing function of significant microbes.


Assuntos
Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Adulto , Biodiversidade , Estudos de Casos e Controles , Egito , Fezes/microbiologia , Feminino , Humanos , Masculino
2.
PLoS One ; 14(12): e0225842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830087

RESUMO

The potential role of probiotic bacteria as adjuvants in vaccine trials led to their use as nonparenteral live mucosal vaccine vectors. Yet, interactions between these vectors, the host and the microbiome are poorly understood. This study evaluates impact of three probiotic, Lactobacillus acidophilus, vector strains, and their interactions with the host's immune response, on the gut microbiome. One strain expressed the membrane proximal external region from HIV-1 (MPER). The other two expressed MPER and either secreted interleukin-1ß (IL-1ß) or expressed the surface flagellin subunit C (FliC) as adjuvants. We also used MPER with rice bran as prebiotic supplement. We observed a strain dependent, differential effect suggesting that MPER and IL-1ß induced a shift of the microbiome while FliC had minimal impact. Joint probiotic and prebiotic use resulted in a compound effect, highlighting a potential synbiotic approach to impact efficacy of vaccination. Careful consideration of constitutive adjuvants and use of prebiotics is needed depending on whether or not to target microbiome modulation to improve vaccine efficacy. No clear associations were observed between total or MPER-specific IgA and the microbiome suggesting a role for other immune mechanisms or a need to focus on IgA-bound, resident microbiota, most affected by an immune response.


Assuntos
Microbioma Gastrointestinal/imunologia , Lactobacillus acidophilus/efeitos dos fármacos , Probióticos/farmacologia , Vacinas , Animais , Biodiversidade , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunoglobulina A/metabolismo , Camundongos , Filogenia , Estatísticas não Paramétricas , Vacinação
3.
J Food Sci ; 83(2): 300-308, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29350755

RESUMO

Flaxseed is an oilseed with many health benefits. Flaxseed may be consumed raw or in processed form. In the raw form, there is a potential for microbial contamination. Several pasteurization methods have been used to reduce microbial contamination. However, such treatments may affect chemical properties of foods. In this study, vacuum steam-pasteurization was conducted on whole flaxseed and milled flaxseed using 4 different conditions (3 min at 75 °C, 3 min at 90 °C, 9 min at 90 °C, and 3 min at 105 °C). Microbial and chemical shelf-life was monitored for 28 wk (36 wk for aerobic plate counts). Significant reduction (P < 0.05) in microbial counts (total aerobic plate counts, and yeast and mold counts) occurred after pasteurization and during storage of both whole flaxseed and milled flaxseed. Although both the moisture content and aw increased after pasteurization, they were similar to the unpasteurized samples during storage. Peroxide value, free fatty acid, headspace volatiles, fatty acid profiles, oil content, and secoisolariciresinol diglucoside (SDG) content were chemical indices measured. Only small changes were observed in the chemical indices after vacuum steam-pasteurization for both pasteurized whole flaxseed and milled flaxseed as compared to the unpasteurized flaxseed at most instances. Vacuum steam-pasteurization can be used as a safe alternative for the microbial reduction of low-moisture products, such as flaxseed, without significantly affecting chemical stability. PRACTICAL APPLICATION: Vacuum steam-pasteurization can be effectively used for the treatment of whole flaxseed and milled flaxseed to reduce spoilage microorganisms, such as total aerobes and yeasts and molds. In addition, this pasteurization method had minimal effects on several chemical shelf-life parameters with positive impact on SDG of the processed flaxseed.


Assuntos
Linho/microbiologia , Contaminação de Alimentos/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Pasteurização , Butileno Glicóis/análise , Contagem de Colônia Microbiana , Ácidos Graxos/análise , Glucosídeos/análise , Peróxidos/análise , Vapor , Vácuo , Compostos Orgânicos Voláteis/análise , Água/análise
4.
Proc W Va Acad Sci ; 89(3): 34-47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29578544

RESUMO

Francisella tularensis is a zoonotic bacterial pathogen that causes severe disease in a wide range of host animals, including humans. Well-developed murine models of F. tularensis pathogenesis are available, but they do not meet the needs of all investigators. However, researchers are increasingly turning to insect host systems as a cost-effective alternative that allows greater increased experimental throughput without the regulatory requirements associated with the use of mammals in biomedical research. Unfortunately, the utility of previously-described insect hosts is limited because of temperature restriction, short lifespans, and concerns about the immunological status of insects mass-produced for other purposes. Here, we present a novel host species, the orange spotted (OS) cockroach (Blaptica dubia), that overcomes these limitations and is readily infected by F. tularensis. Intrahemocoel inoculation was accomplished using standard laboratory equipment and lethality was directly proportional to the number of bacteria injected. Progression of infection differed in insects housed at low and high temperatures and F. tularensis mutants lacking key virulence components were attenuated in OS cockroaches. Finally, antibiotics were delivered to infected OS cockroaches by systemic injection and controlled feeding; in the latter case, protection correlated with oral bioavailability in mammals. Collectively, these results demonstrate that this new host system provides investigators with a new tool capable of interrogating F. tularensis virulence and immune evasion in situations where mammalian models are not available or appropriate, such as undirected screens of large mutant libraries.

5.
Curr Protoc Microbiol ; 32: Unit 6F.1., 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24510848

RESUMO

Stenotrophomonas maltophilia is a ubiquitous soil bacterium that is increasingly recognized as an emerging nosocomial pathogen. This unit includes protocols for the in vitro growth and maintenance of S. maltophilia.


Assuntos
Contagem de Colônia Microbiana/métodos , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Meios de Cultura/química , Meios de Cultura/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/isolamento & purificação , Stenotrophomonas maltophilia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...